Determination of Total Acidity in Beverages

Titration Application

M104

Introduction

This method is used for the quantitative determination of total acidity in fruit juice. Citric acid is the example in this titration application.

Titration applications for determining the acidity in milk and the acidity in wine are also available.

Required Equipment

Apparatus

$\square \quad$ TL 5000/TL 7000/TL 7750/TL 7800Magnetic stirrer (TM 235 for TL 7000; TM 50 for TL 5000)20 mL exchangeable unit (WA 20) with brown glass bottle for titrant if using TL 7000/TL 7750/TL 7800

Electrode and Electrolyte

\qquad pH combination electrode with integrated temperature sensor, such as A 162 2M-DIN-ID (item \# 285130275)$\mathrm{KCl} 3 \mathrm{~mol} / \mathrm{L}$ electrolyte

Solutions

$\square \quad$ Titrant: Sodium hydroxide solution $0.1 \mathrm{~mol} / \mathrm{L}$
\square Titer: Potassium hydrogen phthalate (reference material)Calibration solutions: Technical buffer $\mathrm{pH}=4.00$ and $\mathrm{pH}=7.00$ or in DIN buffer $\mathrm{pH}=4.01$ and $\mathrm{pH}=6.87$Soda lime for carbon dioxide uptake of the reagent

Procedure

Calibration

The pH combination electrode is calibrated in technical buffer $\mathrm{pH}=4.00$ and $\mathrm{pH}=7.00$ or in DIN buffer $\mathrm{pH}=4.01$ and $\mathrm{pH}=6.87$.

Example of the calibration documentation:

Calibration

Buffers used

pH buffer 1:	TEC_4.000
pH buffer 2:	TEC_7.000

Measured values
pH buffer 1: \quad TEC_4.000 $\quad 165.6 \mathrm{mV} / 23.4^{\circ} \mathrm{C}$
pH buffer 2: \quad TEC_7.000 $-11.2 \mathrm{mV} / 23.0^{\circ} \mathrm{C}$

Calibration data

Slope:	$99.4 \% /-58.8 \mathrm{mV} / \mathrm{pH}$
Zero point:	$\mathrm{pH} 6.81 /-11.2 \mathrm{mV}$
Temperature:	$23.4^{\circ} \mathrm{C}(\mathrm{a})$
Date and time:	$07.03 .13 / 15: 04$

Determination of the exact concentration of the titrant

Carbon dioxide absorption from the air occurs in the sodium hydroxide solution of sodium bicarbonate, which changes the pH of the titrant. To prevent this, a drying tube filled with soda lime is placed on the reagent bottle. The exact concentration of the sodium hydroxide solution is determined using the standard potassium hydrogen phthalate. The potassium hydrogen phthalate is dried in the oven before the titer determination for 2 hours at $120^{\circ} \mathrm{C}$ and cooled in a desiccator.

Implementation

In a 50 mL beaker, 0.1 to 0.3 g potassium hydrogen phthalate is weighed accurately and dissolved in 30 mL of dist. water with stirring. It is titrated with $0.1 \mathrm{~mol} / \mathrm{l}$ sodium hydroxide solution.

GLP documentation

Titration graph

Method data

Method name: Titre NaOH
End date:
08.01.13

Titration data

		Weight:	0.20490 g
Start $\mathrm{pH}:$	pH 4.065	End $\mathrm{pH}:$	pH 9.667
Start temperature:	$25.0^{\circ} \mathrm{C}(\mathrm{m})$	End temperature:	$25.0^{\circ} \mathrm{C}(\mathrm{m})$
Zero point:	$\mathrm{pH} 6.85 /-8.9 \mathrm{mV}$	Slope:	$98 . \%^{2} /-58.4 \mathrm{mV} / \mathrm{pH}$
EQ:	$10.032 \mathrm{ml} / \mathrm{pH} \mathrm{8.498}$	Titre:	$0.1000 \mathrm{~mol} / \mathrm{l}$
Mean value:	--	RSD:	---

Calculation formula

Titre:
(W*F2)/((EQ1-B)*M*F1) -> WA
$\begin{array}{ll}\text { Weight (W): } & 0.2049 \mathrm{~g} \mathrm{(m)} \\ \text { Blank value (B): } & 0.0000 \mathrm{ml}\end{array}$
Statistics:
3

Titration duration:	2 m 15 s
End time:	15:46:03

End time:
15:46:03

Mol (M):
204.22000

Factor 2 (F2): $\quad 1000.0000$
Factor 1 (F1): $\quad 1.0000$

Titration of the sample

Load the default method "Total Acidity". The method is ready to use.
Into a 50 mL beaker, 10 mL fruit juice is pipetted accurately and mixed with 20 mL of dist. water with stirring. Immerse the electrode and burette tip into the sample. This is titrated with $0.1 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution.

Preparation of the sample

Titration of the sample

Reaction equation:

Citric acid is a tribasic acid. There are three moles of sodium hydroxide required to neutralize one mole of citric acid completely:

$$
\mathrm{H}_{3} \text { Citrat }+3 \mathrm{NaOH} \longrightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{3} \text { Citrat }
$$

Result example:

GLP documentation

Titration graph

Method data
Method name: Orange Juice
End date: 08.03.13

Titration data

Sample ID:	Granini 2
Start pH:	pH 3.853
Start temperature:	$23.3^{\circ} \mathrm{C}(\mathrm{a})$
Zero point:	$\mathrm{pH} 6.81 /-11.3 \mathrm{mV}$
EP1:	$12.179 \mathrm{ml} / \mathrm{pH} 8.200$

Calculation formula

Acidity:
(EP1-B)*T* ${ }^{*}$ F1/(V*F2)

Blank value (B):	0.0000 ml
Factor 1 (F1):	1.0000
Factor 2 (F2):	1.0000

Titration duration: 1 m 57 s
End time: 12:19:40

Pattern:	10.000 ml
End $\mathrm{pH}:$	pH 8.235
End temperature:	$23.8^{\circ} \mathrm{C}(\mathrm{a})$
Slope:	$99.6 \% /-58.9 \mathrm{mV} / \mathrm{pH}$
Acidity:	$7.80 \mathrm{~g} / \mathrm{l}$

$\mathrm{Mol}(\mathrm{M}): \quad 64.04000$

Titre $(\mathrm{T}):$	$0.10000000(\mathrm{~m})$
Pattern $(\mathrm{V}):$	$10.000 \mathrm{ml}(\mathrm{m})$
Statistics:	Off

attern (V)
Statistics:

Method data overall view

Method name:	Orange Juice
Method type:	Automatic titration
Measured value:	pH
Titration mode:	End pt.
Linear steps:	0.040 ml

Created at:	$03 / 08 / 13$ 12:06:41
Last modification:	03/08/13 12:16:39
Damping settings:	None
Documentation:	GLP

Measuring speed / drift: Normal:

Initial waiting time:	0 s
Titration direction:	Increase
Pretitration:	Off

minimum holding time: 02 s
maximum holding time: 15 s
Measuring time: 02 s
Drift: $\quad 20 \mathrm{mV} / \mathrm{min}$
delta endpoint 1: $\quad \mathrm{pH} 1.000$
Endpoint delay 1: 5 s

Filling speed:
30 s

Dosing speed: $\quad 65.00 \%$
Maximum dosing volume: $\quad 50.00 \mathrm{ml}$
Unit values

Unit size:	20 ml
Unit ID:	10039117
Reagent:	NaOH
Batch ID:	no entry
Concentration [mol/l]:	0.01000
Determined at:	$03 / 08 / 13$ 20:03:29
Expire date:	--
Opened/compounded:	--
Test according ISO 8655:	$03 / 19 / 12$
Last modification:	$03 / 08 / 1312: 03: 32$

Contact Information

Please contact our titration experts if you have any application or product questions. Thanks!

> Xylem Inc.
> 1725 Brannum Lane
> Yellow Springs, Ohio 45387

Application/Technical Support:

$$
+1-845-258-1200
$$

titration.ysi@xyleminc.com

Ordering:

+1-937-767-7241
orders@ysi.com

